a2 United States Patent

Natanzon et al.

US009235481B1

US 9,235,481 B1
*Jan. 12, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(63)

(1)

(52)

(58)

CONTINUOUS DATA REPLICATION

Applicant: EMC Corporation, Hopkinton, MA
(US)

Inventors: Assaf Natanzon, Tel Aviv (IL); Saar

Cohen, Mishmeret (IL); Steven R

Bromling, Edmonton (CA)

Assignee: EMC Corporation, Hopkinton, MA

Us)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 14/706,104
Filed: May 7, 2015

Related U.S. Application Data

Continuation of application No. 13/339,780, filed on
Dec. 29, 2011, now Pat. No. 9,032,160.

Int. Cl1.

GO6F 12/08 (2006.01)

GO6F 11/34 (2006.01)

GO6F 1724 (2006.01)

GO6F 11/16 (2006.01)

GO6F 17/30 (2006.01)

GO6r 1107 (2006.01)

U.S. CL

CPC ... GO6F 11/1695 (2013.01); GO6F 11073

(2013.01); GO6F 17/30368 (2013.01); GO6F
17/30578 (2013.01); GOGF 17/30864 (2013.01);
GOG6F 2201/80 (2013.01)

Field of Classification Search
CPC . GO6F 3/067; GOG6F 11/1484; GOG6F 9/45533;

TARGET SIDE
PROTECTION AGENT|

i

GOG6F 2009/4557;, GOGF 3/0647; GOGF 12/109;
GOGF 2201/84; GOGF 3/0662; GOGF 17/30235,
GOG6F 2201/815; GOGF 2212/152
See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

2007/0050538 Al* 3/2007 Northcutt GOG6F 3/0605
711112

2008/0082770 Al* 42008 Ahal ... GO6F 11/1471
711/162

2012/0054367 Al* 3/2012 Ramakrishnan GOG6F 9/4856
709/242

2012/0102268 Al* 42012 Smith ... GO6F 11/2089
711/113

2013/0086298 Al* 42013 Alanisc.ccooo.. GOG6F 9/4856
711/6

* cited by examiner

Primary Examiner — Matthew Bradley
Assistant Examiner — Candice Rankin

(74) Attorney, Agent, or Firm — Krishnendu Gupta; Joseph
D’ Angelo

(57) ABSTRACT

In a first embodiment, a method and computer program prod-
uct for use in a storage system comprising quiescing 10
commands the sites of an ACTIVE/ACTIVE storage system,
the active/active storage system having at least two storage
sites communicatively coupled via a virtualization layer, cre-
ating a change set, unquiescing IO commands by the virtual-
ization layers, transferring data of a change set to the other
sites of the active/active storage system by the virtualization
layer, and flushing the data by the virtualization layer.

In a second embodiment, a method and computer program
product for use in a storage system comprising fracturing a
cluster of an active/active storage system; wherein the cluster
includes at least two sites, stopping 1O on a first site of the
cluster; and rolling to a point in time on the first site.

20 Claims, 10 Drawing Sheets

SOURCE SIDE
PROTECTION AGENT

S

108

[FIBER CHANNEL SWITCH |
120 S
JOURNAL
5 | JOURNALK=— | pROCESSOR
WE T 180
') DATA PROTECTION
APPLIANGE FOR TARGET
TARGET SIDE
STORAGE

SPER

JOURNAL JURNAL
PROCESSOR Zamﬁm,‘
i i
18 e /
DATA PROTECTION Lua
APPLIANCE FOR SOURCE
SOURCE SIDE
STORAGE

SIES

US 9,235,481 B1

Sheet 1 of 10

Jan. 12, 2016

U.S. Patent

[E A

IHHYHO W

US 9,235,481 B1

Sheet 2 of 10

Jan. 12, 2016

U.S. Patent

¢ 'O

V1vQ3 OL H3LINIOd | N1 3DOVEOLS NI SS3HAAY | N7 TYNYNOT NI mwmmon?‘, JWIL 2 3Lva, 3zis | di
NN—
—
NILINMMYIAO 38 0L VAVA Q0| 4l
V.ivQ OL U3LINIOd | NTIDOVHOLS NI SSTHAAV | N1 TVNYNOr NI SSRAAAY | WL 8 ILvd | FZIs | al
N ‘/ﬁ
JOVHOLS "0 VLVQ MIN ai

S~ .

Vivavizn 00NN,

vivd .OONN,

Y1vavidn .od.

viva.od.

US 9,235,481 B1

Sheet 3 of 10

Jan. 12, 2016

U.S. Patent

¢ aInb

uo

06¢€
1eZIUOJIYOUAS

08¢ abelioig

GLE NVS

gee abelioig

0€E NVS

gce
SOWIN|OA [BNUIA

Gg8e

18Ae 921AI8S [BNUIA

09€ NVS

GGg eoedg AN

0G€E ¢ S

0c€ NVS

GLg 8oedg AA

01E | 94S

US 9,235,481 B1

Sheet 4 of 10

Jan. 12, 2016

U.S. Patent

¥ aInb

08t)47
lewinop gev oy -
) SOWIN|OA
Gy vdd 0cv VdY
AN 0/ ooy

YXA% 0y gyoen allIpA | @YydeD SlIAA X ArrAN -

SSUN[OA [ENMIA SbUINOA [ENLIA
ﬂ 11%17 /o>m._ 90IAIBS [BNUIA

GG 90edS AA

0G¥ ¢ oNS

G Ly 80edS AA

Ol [AlS

US 9,235,481 B1

Sheet 5 of 10

Jan. 12, 2016

U.S. Patent

G a.nbi4

0GG loysdeug ajeal)

01G 2Wn|OA O] elep

SIM

Ggegleuanol o) elep

SN

0€S VYdQd 0} elep opun

Sl

GcG Belep opun

peay

0Zg Elep I8}

suel|

026G obeuols a9

saIND

016 iod ouAs ajealn

!

006G obeuols a9

saIND

US 9,235,481 B1

Sheet 6 of 10

Jan. 12, 2016

U.S. Patent

g aInb

089
leuinor |1 G/9 vdd

/ ayor’]
//
0€9
SSWIN|OA [ENUIA
ce9
awi] uljuiod

GG9 82edg AA
0G9 a¥s 1Id

0¥9
Geo
| o |LIBWnOr 029 Vdd
Ge9
SOWN|OA [BNMIA

G19 8oeds WA

019 [Uononpoid oAy

US 9,235,481 B1

Sheet 7 of 10

Jan. 12, 2016

U.S. Patent

/ @inBi4

0G/ 49sn 01 | |d 9sodx3

Gt/ 60| opay 0] SlIAA

Ot/ swi} ul jujod

O} |I°Y

0€/ 9YoeD S US|

02/ 1S dAll0B-UOU Uo SO doig

!

01/ J81sn|o 1idg

GO/ 1|d O} Ssao9e Jsanbay

US 9,235,481 B1

Sheet 8 of 10

Jan. 12, 2016

U.S. Patent

g ainbi4

0.8 dn 1soy Bulg

G98 S8NIS Y10q 9ZIU0JYOUAS

098 sisoy umop buug

/G8 Bo| opay pJedsi(

GGQ 9IS dAI)0B 0] SS90k dOIS

sak

0G8 SOMS Yloq azIuoJysuig

!

G¥8 1ld 1sale| 01 ||oY

!

GE8 11d pJ1edsIq

ON e

0€8 Lld 01 LaASJ 0} 9|qeJISap |1 |9pldaQ

!

028 weals OgNN ul sebueyo ing

!

018 LId SSe20® 0} Josn ajgeu]

US 9,235,481 B1

Sheet 9 of 10

Jan. 12, 2016

U.S. Patent

0d B

6 94nbi4

WALBAS

/86

el
OHLENDYN

K

G86

086

Gco

SE0HN0S

Fa

106

S304N0S

Wad

106

TN RN
SEOHN0

056

106

U.S. Patent Jan. 12, 2016 Sheet 10 of 10 US 9,235,481 B1

Figure 10

)
P 4. \55
%, .\} ot

/‘k’ prever S
[

US 9,235,481 Bl

1
CONTINUOUS DATA REPLICATION

RELATED APPLICATIONS

This Application is a Continuation of U.S. patent applica-
tion Ser. No. 13/339,780 filed on Dec. 29, 2011 now U.S. Pat.
No. 9,032,160, the content and teachings of which are hereby
incorporated by reference in their entirety.

A portion of the disclosure of this patent document may
contain command formats and other computer language list-
ings, all of which are subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc-
tion by anyone of the patent document or the patent disclo-
sure, as it appears in the Patent and Trademark Office patent
file or records, but otherwise reserves all copyright rights
whatsoever.

TECHNICAL FIELD

This invention relates to data replication.

BACKGROUND

Computer data is vital to today’s organizations, and a sig-
nificant part of protection against disasters is focused on data
protection. As solid-state memory has advanced to the point
where cost of memory has become a relatively insignificant
factor, organizations can afford to operate with systems that
store and process terabytes of data.

Conventional data protection systems include tape backup
drives, for storing organizational production site data on a
periodic basis. Such systems suffer from several drawbacks.
First, they require a system shutdown during backup, since
the data being backed up cannot be used during the backup
operation. Second, they limit the points in time to which the
production site can recover. For example, if data is backed up
on a daily basis, there may be several hours of lost data in the
event of a disaster. Third, the data recovery process itselftakes
a long time.

Another conventional data protection system uses data rep-
lication, by creating a copy of the organization’s production
site data on a secondary backup storage system, and updating
the backup with changes. The backup storage system may be
situated in the same physical location as the production stor-
age system, or in a physically remote location. Data replica-
tion systems generally operate either at the application level,
at the file system level, or at the data block level.

Current data protection systems try to provide continuous
data protection, which enable the organization to roll back to
any specified point in time within a recent history. Continuous
data protection systems aim to satisty two conflicting objec-
tives, as best as possible; namely, (i) minimize the down time,
in which the organization production site data is unavailable,
during a recovery, and (ii) enable recovery as close as possible
to any specified point in time within a recent history.

Continuous data protection typically uses a technology
referred to as “journaling,” whereby a log is kept of changes
made to the backup storage. During a recovery, the journal
entries serve as successive “undo” information, enabling roll-
back of the backup storage to previous points in time. Jour-
naling was first implemented in database systems, and was
later extended to broader data protection.

One challenge to continuous data protection is the ability
of'a backup site to keep pace with the data transactions of a
production site, without slowing down the production site.
The overhead of journaling inherently requires several data
transactions at the backup site for each data transaction at the

10

15

20

25

30

35

40

45

50

55

60

65

2

production site. As such, when data transactions occur at a
high rate at the production site, the backup site may not be
able to finish backing up one data transaction before the next
production site data transaction occurs. If the production site
is not forced to slow down, then necessarily a backlog of
un-logged data transactions may build up at the backup site.
Without being able to satisfactorily adapt dynamically to
changing data transaction rates, a continuous data protection
system chokes and eventually forces the production site to
shut down.

SUMMARY

In a first embodiment, a method and computer program
product for use in a storage system comprising quiescing 1O
commands the sites of an ACTIVE/ACTIVE storage system,
the active/active storage system having at least two storage
sites communicatively coupled via a virtualization layer, cre-
ating a change set, unquiescing IO commands by the virtual-
ization layers, transferring data of a change set to the other
sites of the active/active storage system by the virtualization
layer, and flushing the data by the virtualization layer.

In a second embodiment, a method and computer program
product for use in a storage system comprising fracturing a
cluster of an active/active storage system; wherein the cluster
includes at least two sites, stopping 1O on a first site of the
cluster; and rolling to a point in time on the first site.

BRIEF DESCRIPTION OF THE DRAWINGS

Objects, features, and advantages of embodiments dis-
closed herein may be better understood by referring to the
following description in conjunction with the accompanying
drawings. The drawings are not meant to limit the scope of the
claims included herewith. For clarity, not every element may
be labeled in every figure. The drawings are not necessarily to
scale, emphasis instead being placed upon illustrating
embodiments, principles, and concepts. Thus, features and
advantages of the present disclosure will become more appar-
ent from the following detailed description of exemplary
embodiments thereof taken in conjunction with the accom-
panying drawings in which:

FIG. 1 is a simplified illustration of a data protection sys-
tem, in accordance with an embodiment of the present inven-
tion;

FIG. 2 is a simplified illustration of a write transaction for
a journal, in accordance with an embodiment of the present
invention;

FIG. 3 is a simplified illustration of sites with a virtual
service layer, in accordance with an embodiment of the
present invention;

FIG. 4 is a simplified illustration of sites with a virtual
service layer with write caches, in accordance with an
embodiment of the present invention;

FIG. 5 is a simplified example of an embodiment of a
method for creating a snapshot for the two sites, in accor-
dance with an embodiment of the present disclosure;

FIG. 6 is an alternative simplified illustration of sites with
write caches illustrating Point in Time access, in accordance
with an embodiment of the present invention;

FIG. 7 is a simplified example of an embodiment of a
method for accessing a Point in Time, in accordance with an
embodiment of the present disclosure;

FIG. 8 is a simplified example of an embodiment of a
method for synching an image across two sites, in accordance
with an embodiment of the present disclosure;

US 9,235,481 Bl

3

FIG. 9 is an example of an embodiment of an apparatus that
may utilize the techniques described herein, in accordance
with an embodiment of the present invention; and

FIG. 10 is an example of an embodiment of a method
embodied on a computer readable storage medium that may
utilize the techniques described herein, in accordance with an
embodiment of the present invention.

DETAILED DESCRIPTION

In some embodiments of the instant disclosure, journal
based replication may be integrated with a virtual service
layer. In certain embodiments, one or more splitters may be
integrated into the virtual service layer. In further embodi-
ments, the virtual service lay may span multiple sites, and the
sites may be at different geographic locations. In certain
embodiments, each site may have one or more nodes and each
node may have a splitter. In most embodiments, multiple sites
linked via a virtual service layer may be referred to herein as
an ACTIVE/ACTIVE storage system. In at least some
embodiments, the virtual service layer may enable multiple
sites to present the appearance of the same volume or virtual
volume. In most embodiments, a host or virtual machine
accessing any of the sites with the virtual volume may see the
same data on the virtual volume as any other site. In further
embodiments, each site may reserve a portion of the virtual
volume for active access.

In some embodiments of the instant disclosure, access to
point in time images may be enabled in a replicated environ-
ment. In some embodiments of the instant disclosure, access
to point in time images may be enabled in an active/active
storage system, for each of the sites. In at least some environ-
ments, the replicated environments may have a virtual service
layer. In certain embodiments, an UNDO stream in a journal
may be used to roll a site to a point in time (PIT). In most
embodiments, each time a change set is to be pushed to a
volume, the undo of the change set may be read and sent to a
data protection appliance, and the change set may be written
to the journal. In further embodiments, it may be enabled to
access any change set as a point in time. In most embodi-
ments, it is access to any point in time is enabled without
having a second copy of the data.

The following definitions are employed throughout the
specification and claims.

BACKUP SITE—may be a facility where replicated pro-
duction site data is stored; the backup site may be located in
a remote site or at the same location as the production site;

CLONE—a clone may be a copy or clone of the image or
images, drive or drives of a first location at a second location;

DELTA MARKING STREAM-—may mean the tracking
of the delta between the production and replication site,
which may contain the meta data of changed locations, the
delta marking stream may be kept persistently on the journal
at the production site of the replication, based on the delta
marking data the DPA knows which locations are different
between the production and the replica and transfers them to
the replica to make both sites identical.

DPA—may be Data Protection Appliance a computer or a
cluster of computers, or a set of processes that serve as a data
protection appliance, responsible for data protection services
including inter alia data replication of a storage system, and
journaling of I/O requests issued by a host computer to the
storage system,

RPA—may be replication protection appliance, is another
name for DPA.

10

15

20

25

30

40

45

50

55

60

65

4

HOST—may be at least one computer or networks of com-
puters that runs at least one data processing application that
issues I/O requests to one or more storage systems; ahostisan
initiator with a SAN;

HOST DEVICE—may be an internal interface in a host, to
a logical storage unit;

IMAGE—may be a copy of a logical storage unit at a
specific point in time;

INITIATOR—may be a node in a SAN that issues 1/O
requests;

JOURNAL—may be a record of write transactions issued
to a storage system; used to maintain a duplicate storage
system, and to rollback the duplicate storage system to a
previous point in time;

LOGICAL UNIT—may be a logical entity provided by a
storage system for accessing data from the storage system;

LUN—may be a logical unit number for identifying a
logical unit;

PHYSICAL STORAGE UNIT—may be a physical entity,
such as a disk or an array of disks, for storing data in storage
locations that can be accessed by address;

PRODUCTION SITE—may be a facility where one or
more host computers run data processing applications that
write data to a storage system and read data from the storage
system,

SAN—may be a storage area network of nodes that send
and receive I/O and other requests, each node in the network
being an initiator or a target, or both an initiator and a target;

SOURCE SIDE—may be a transmitter of data within a
data replication workflow, during normal operation a produc-
tion site is the source side; and during data recovery a backup
site is the source side;

SNAPSHOT—a Snapshot may refer to differential repre-
sentations of an image, i.e. the snapshot may have pointers to
the original volume, and may point to log volumes for
changed locations. Snapshots may be combined into a snap-
shot array, which may represent different images over a time
period.

STORAGE SYSTEM—may be a SAN entity that provides
multiple logical units for access by multiple SAN initiators

TARGET—may be a node in a SAN that replies to 1/O
requests;

TARGET SIDE—may be a receiver of data within a data
replication workflow; during normal operation a back site is
the target side, and during data recovery a production site is
the target side;

WAN-—may be a wide area network that connects local
networks and enables them to communicate with one another,
such as the Internet.

SPLITTER/PROTECTION AGENT: may be an agent run-
ning either on a production host a switch or a storage array
which can intercept 10 and split them to a DPA and to the
storage array, fail IO redirect IO or do any other manipulation
to the IO.

VIRTUAL VOLUME: may be a volume which is exposed
to host by a virtualization layer, the virtual volume may be
spanned across more than one site

DISTRIBUTED MIRROR: may be a mirror of a volume
across distance, either metro or geo, which is accessible at all
sites.

BLOCK VIRTUALIZATION: may be a layer, which takes
backend storage volumes and by slicing concatenation and
striping create a new set of volumes, which serve as base
volumes or devices in the virtualization layer

MARKING ON SPLITTER: may be a mode in a splitter
where intercepted 10s are not split to an appliance and the

US 9,235,481 Bl

5

storage, but changes (meta data) are tracked in a list and/or a
bitmap and I/O is immediately sent to down the IO stack.

FAIL ALL MODE: may be a mode of a volume in the
splitter where all write and read 1Os intercepted by the splitter
are failed to the host, but other SCSI commands like read
capacity are served.

GLOBAL FAIL ALL MODE: may be a mode of a volume
in the virtual layer where all write and read 1Os virtual layer
are failed to the host, but other SCSI commands like read
capacity are served.

LOGGED ACCESS: may be an access method provided by
the appliance and the splitter, in which the appliance rolls the
volumes of the consistency group to the point in time the user
requested and let the host access the volumes in a copy on first
write base.

VIRTUAL ACCESS: may be an access method provided
by the appliance and the splitter, in which the appliance
exposes a virtual volume from a specific point in time to the
host, the data for the virtual volume is partially stored on the
remote copy and partially stored on the journal.

CDP: Continuous Data Protection, may refer to a full rep-
lica ofa volume or a set of volumes along with a journal which
allows any point in time access, the CDP copy is at the same
site, and maybe the same storage array of the production site

CRR: Continuous Remote Replica may refer to a full rep-
lica ofa volume or a set of volumes along with a journal which
allows any point in time access at a site remote to the produc-
tion volume and on a separate storage array.

A description of journaling and some techniques associ-
ated with journaling may be described in the patent titled
METHODS AND APPARATUS FOR OPTIMAL JOUR-
NALING FOR CONTINUOUS DATA REPLICATION and
with U.S. Pat. No. 7,516,287, which is hereby incorporated
by reference.

A discussion of image access may be found in U.S. patent
application Ser. No. 12/969,903 entitled “DYNAMIC LUN
RESIZING IN A REPLICATION ENVIRONMENT” filed
on Dec. 16, 2010 assigned to EMC Corp., which is hereby
incorporated by reference.

A discussion ofjournal based replication may be integrated
with a virtual service layer. may be found in U.S. patent
application Ser. Nos. 13/077,256, 13/077,262, and 13/077,
266, entitled “CONSISTENT REPLICATION IN A GEO-
GRAPHICALLY DISPERSE ACTIVE ENVIRONMENT,”
“INVERSE STAR REPLICATION,” and “NETWORKED
BASED REPLICATION OF DISTRIBUTED VOLUMES;,”
respectively, filed on Dec. 16, 2010 assigned to EMC Corp.,
which is hereby incorporated by reference.

Description of Embodiments Using of a Five State
Journaling Process

Reference is now made to FIG. 1, which is a simplified
illustration of a data protection system 100, in accordance
with an embodiment of the present invention. Shown in FIG.
1 are two sites; Site I, which is a production site, on the right,
and Site I1, which is a backup site, on the left. Under normal
operation the production site is the source side of system 100,
and the backup site is the target side of the system. The
backup site is responsible for replicating production site data.
Additionally, the backup site enables rollback of Site I data to
an earlier pointing time, which may be used in the event of
data corruption of a disaster, or alternatively in order to view
or to access data from an earlier point in time.

During normal operations, the direction of replicate data
flow goes from source side to target side. It is possible, how-
ever, for a user to reverse the direction of replicate data flow,

10

15

20

25

30

35

40

45

50

55

60

65

6

in which case Site I starts to behave as a target backup site, and
Site II starts to behave as a source production site. Such
change of replication direction is referred to as a “failover”. A
failover may be performed in the event of a disaster at the
production site, or for other reasons. In some data architec-
tures, Site I or Site II behaves as a production site for a portion
of stored data, and behaves simultaneously as a backup site
for another portion of stored data. In some data architectures,
a portion of stored data is replicated to a backup site, and
another portion is not.

The production site and the backup site may be remote
from one another, or they may both be situated at a common
site, local to one another. Local data protection has the advan-
tage of minimizing data lag between target and source, and
remote data protection has the advantage is being robust in the
event that a disaster occurs at the source side.

The source and target sides communicate via a wide area
network (WAN) 128, although other types of networks are
also adaptable for use with the present invention.

In accordance with an embodiment of the present inven-
tion, each side of system 100 includes three major compo-
nents coupled via a storage area network (SAN); namely, (i)
a storage system, (ii) a host computer, and (iii) a data protec-
tion appliance (DPA). Specifically with reference to FIG. 1,
the source side SAN includes a source host computer 104, a
source storage system 108, and a source DPA 112. Similarly,
the target side SAN includes a target host computer 116, a
target storage system 120, and a target DPA 124.

Generally, a SAN includes one or more devices, referred to
as “nodes”. A node in a SAN may be an “initiator” or a
“target”, or both. An initiator node is a device that is able to
initiate requests to one or more other devices; and a target
node is a device that is able to reply to requests, such as SCSI
commands, sent by an initiator node. A SAN may also include
network switches, such as fiber channel switches. The com-
munication links between each host computer and its corre-
sponding storage system may be any appropriate medium
suitable for data transfer, such as fiber communication chan-
nel links.

In an embodiment of the present invention, the host com-
municates with its corresponding storage system using small
computer system interface (SCSI) commands.

System 100 includes source storage system 108 and target
storage system 120. Each storage system includes physical
storage units for storing data, such as disks or arrays of disks.
Typically, storage systems 108 and 120 are target nodes. In
order to enable initiators to send requests to storage system
108, storage system 108 exposes one or more logical units
(LU) to which commands are issued. Thus, storage systems
108 and 120 are SAN entities that provide multiple logical
units for access by multiple SAN initiators. Logical units are
a logical entity provided by a storage system, for accessing
data stored in the storage system. A logical unit is identified
by aunique logical unit number (LUN). In an embodiment of
the present invention, storage system 108 exposes a logical
unit 136, designated as LU A, and storage system 120 exposes
a logical unit 156, designated as LU B.

In an embodiment of the present invention, LU B is used
for replicating LU A. As such, LU B is generated as a copy of
LU A. In one embodiment, LU B is configured so that its size
is identical to the size of LU A. Thus for LU A, storage system
120 serves as a backup for source side storage system 108.
Alternatively, as mentioned hereinabove, some logical units
of'storage system 120 may be used to back up logical units of
storage system 108, and other logical units of storage system
120 may be used for other purposes. Moreover, in certain
embodiments of the present invention, there is symmetric

US 9,235,481 Bl

7

replication whereby some logical units of storage system 108
are used for replicating logical units of storage system 120,
and other logical units of storage system 120 are used for
replicating other logical units of storage system 108.

System 100 includes a source side host computer 104 and
atarget side host computer 116. A host computer may be one
computer, or a plurality of computers, or a network of distrib-
uted computers, each computer may include inter alia a con-
ventional CPU, volatile and non-volatile memory, a data bus,
an I/O interface, a display interface and a network interface.
Generally a host computer runs at least one data processing
application, such as a database application and an e-mail
server.

Generally, an operating system of a host computer creates
ahost device for each logical unit exposed by a storage system
in the host computer SAN. A host device is a logical entity in
a host computer, through which a host computer may access
alogical unit. In an embodiment of the present invention, host
device 104 identifies LU A and generates a corresponding
host device 140, designated as Device A, through which it can
access LU A. Similarly, host computer 116 identifies LU B
and generates a corresponding device 160, designated as
Device B.

In an embodiment of the present invention, in the course of
continuous operation, host computer 104 is a SAN initiator
that issues /O requests (write/read operations) through host
device 140 to LU A using, for example, SCSI commands.
Such requests are generally transmitted to LU A with an
address that includes a specific device identifier, an offset
within the device, and a data size. Offsets are generally
aligned to 512 byte blocks. The average size of a write opera-
tion issued by host computer 104 may be, for example, 10
kilobytes (KB); i.e., 20 blocks. For an 1/O rate of 50 mega-
bytes (MB) per second, this corresponds to approximately
5,000 write transactions per second.

System 100 includes two data protection appliances, a
source side DPA 112 and a target side DPA 124. A DPA
performs various data protection services, such as data repli-
cation of a storage system, and journaling of I/O requests
issued by a host computer to source side storage system data.
As explained in detail hereinbelow, when acting as a target
side DPA, a DPA may also enable rollback of data to an earlier
point in time, and processing of rolled back data at the target
site. Each DPA 112 and 124 is a computer that includes inter
alia one or more conventional CPUs and internal memory.

For additional safety precaution, each DPA is a cluster of
such computers. Use of a cluster ensures that if a DPA com-
puter is down, then the DPA functionality switches over to
another computer. The DPA computers within a DPA cluster
communicate with one another using at least one communi-
cation link suitable for data transfer via fiber channel or IP
based protocols, or such other transfer protocol. One com-
puter from the DPA cluster serves as the DPA leader. The DPA
cluster leader coordinates between the computers in the clus-
ter, and may also perform other tasks that require coordina-
tion between the computers, such as load balancing.

In the architecture illustrated in FIG. 1, DPA 112 and DPA
124 are standalone devices integrated within a SAN. Alterna-
tively, each of DPA 112 and DPA 124 may be integrated into
storage system 108 and storage system 120, respectively, or
integrated into host computer 104 and host computer 116,
respectively. Both DPAs communicate with their respective
host computers through communication lines such as fiber
channels using, for example, SCSI commands.

In accordance with an embodiment of the present inven-
tion, DPAs 112 and 124 are configured to act as initiators in
the SAN; i.e., they can issue I/O requests using, for example,

35

40

45

50

55

60

65

8

SCSI commands, to access logical units on their respective
storage systems. DPA 112 and DPA 124 are also configured
with the necessary functionality to act as targets; i.e., to reply
to I/O requests, such as SCSI commands, issued by other
initiators in the SAN, including inter alia their respective host
computers 104 and 116. Being target nodes, DPA 112 and
DPA 124 may dynamically expose or remove one or more
logical units.

As described hereinabove, Site I and Site II may each
behave simultaneously as a production site and a backup site
for different logical units. As such, DPA 112 and DPA 124
may each behave as a source DPA for some logical units, and
as a target DPA for other logical units, at the same time.

In accordance with an embodiment of the present inven-
tion, host computer 104 and host computer 116 include pro-
tection agents 144 and 164, respectively. Protection agents
144 and 164 intercept SCSI commands issued by their respec-
tive host computers, via host devices to logical units that are
accessible to the host computers. In accordance with an
embodiment of the present invention, a data protection agent
may act on an intercepted SCSI commands issued to a logical
unit, in one of the following ways:

Send the SCSI commands to its intended logical unit.

Redirect the SCSI command to another logical unit.

Split the SCSI command by sending it first to the respective
DPA. After the DPA returns an acknowledgement, send the
SCSI command to its intended logical unit.

Fail a SCSI command by returning an error return code.

Delay a SCSI command by not returning an acknowledge-
ment to the respective host computer.

A protection agent may handle different SCSI commands,
differently, according to the type of the command. For
example, a SCSI command inquiring about the size of a
certain logical unit may be sent directly to that logical unit,
while a SCSI write command may be split and sent first to a
DPA associated with the agent. A protection agent may also
change its behavior for handling SCSI commands, for
example as a result of an instruction received from the DPA.

Specifically, the behavior of a protection agent for a certain
host device generally corresponds to the behavior of its asso-
ciated DPA with respect to the logical unit of the host device.
When a DPA behaves as a source site DPA for a certain logical
unit, then during normal course of operation, the associated
protection agent splits I/O requests issued by a host computer
to the host device corresponding to that logical unit. Simi-
larly, when a DPA behaves as a target device for a certain
logical unit, then during normal course of operation, the asso-
ciated protection agent fails I[/O requests issued by host com-
puter to the host device corresponding to that logical unit.

Communication between protection agents and their
respective DPAs may use any protocol suitable for data trans-
fer within a SAN, such as fiber channel, or SCSI over fiber
channel. The communication may be direct, or via a logical
unit exposed by the DPA. In an embodiment of the present
invention, protection agents communicate with their respec-
tive DPAs by sending SCSI commands over fiber channel.

In an embodiment of the present invention, protection
agents 144 and 164 are drivers located in their respective host
computers 104 and 116. Alternatively, a protection agent may
also belocated in a fiber channel switch, or in any other device
situated in a data path between a host computer and a storage
system.

What follows is a detailed description of system behavior
under normal production mode, and under recovery mode.

In accordance with an embodiment of the present inven-
tion, in production mode DPA 112 acts as a source site DPA
for LU A. Thus, protection agent 144 is configured to actas a

US 9,235,481 Bl

9

source side protection agent; i.e., as a splitter for host device
A. Specifically, protection agent 144 replicates SCSI /O
requests. A replicated SCSI 1/O request is sent to DPA 112.
After receiving an acknowledgement from DPA 124, protec-
tion agent 144 then sends the SCSI /O request to LU A. Only
after receiving a second acknowledgement from storage sys-
tem 108 may host computer 104 initiate another I/O request.

When DPA 112 receives a replicated SCSI write request
from data protection agent 144, DPA 112 transmits certain
1/0 information characterizing the write request, packaged as
a “‘write transaction”, over WAN 128 to DPA 124 on the target
side, for journaling and for incorporation within target stor-
age system 120.

DPA 112 may send its write transactions to DPA 124 using
a variety of modes of transmission, including inter alia (i) a
synchronous mode, (ii) an asynchronous mode, and (iii) a
snapshot mode. In synchronous mode, DPA 112 sends each
write transaction to DPA 124, receives back an acknowledge-
ment from DPA 124, and in turns sends an acknowledgement
back to protection agent 144. Protection agent 144 waits until
receipt of such acknowledgement before sending the SCSI
write request to LU A.

In asynchronous mode, DPA 112 sends an acknowledge-
ment to protection agent 144 upon receipt of each I/O request,
before receiving an acknowledgement back from DPA 124.

In snapshot mode, DPA 112 receives several I/O requests
and combines them into an aggregate “snapshot™ of all write
activity performed in the multiple /O requests, and sends the
snapshot to DPA 124, for journaling and for incorporation in
target storage system 120. In snapshot mode DPA 112 also
sends an acknowledgement to protection agent 144 upon
receipt of each I/O request, before receiving an acknowledge-
ment back from DPA 124.

For the sake of clarity, the ensuing discussion assumes that
information is transmitted at write-by-write granularity.

While in production mode, DPA 124 receives replicated
data of LU A from DPA 112, and performs journaling and
writing to storage system 120. When applying write opera-
tions to storage system 120, DPA 124 acts as an initiator, and
sends SCSI commands to LU B.

During a recovery mode, DPA 124 undoes the write trans-
actions in the journal, so as to restore storage system 120 to
the state it was at, at an earlier time.

As described hereinabove, in accordance with an embodi-
ment of the present invention, LU B is used as a backup of LU
A. As such, during normal production mode, while data writ-
ten to LU A by host computer 104 is replicated from LU A to
LU B, host computer 116 should not be sending I/O requests
to LU B. To prevent such I/O requests from being sent, pro-
tection agent 164 acts as a target site protection agent for host
Device B and fails I/O requests sent from host computer 116
to LU B through host Device B.

In accordance with an embodiment of the present inven-
tion, target storage system 120 exposes a logical unit 176,
referred to as a “journal LU”, for maintaining a history of
write transactions made to LU B, referred to as a “journal”.
Alternatively, journal LU 176 may be striped over several
logical units, or may reside within all of or a portion of
another logical unit. DPA 124 includes a journal processor
180 for managing the journal.

Journal processor 180 functions generally to manage the
journal entries of LU B. Specifically, journal processor 180 (i)
enters write transactions received by DPA 124 from DPA 112
into the journal, by writing them into the journal LU, (ii)
applies the journal transactions to LU B, and (iii) updates the
journal entries in the journal LU with undo information and
removes already-applied transactions from the journal. As

25

35

40

45

55

60

10
described below, with reference to FIGS. 2 and 3A-3D, jour-
nal entries include four streams, two of which are written
when write transaction are entered into the journal, and two of
which are written when write transaction are applied and
removed from the journal.

Reference is now made to FIG. 2, which is a simplified
illustration of a write transaction 200 for a journal, in accor-
dance with an embodiment of the present invention. The
journal may be used to provide an adaptor for access to
storage 120 at the state it was in at any specified point in time.
Since the journal contains the “undo” information necessary
to rollback storage system 120, data that was stored in specific
memory locations at the specified point in time may be
obtained by undoing write transactions that occurred subse-
quent to such point in time.

Write transaction 200 generally includes the following
fields:

one or more identifiers;

a time stamp, which is the date & time at which the trans-
action was received by source side DPA 112;

a write size, which is the size of the data block;

a location in journal LU 176 where the data is entered;

a location in LU B where the data is to be written; and

the data itself.

Write transaction 200 is transmitted from source side DPA
112 to target side DPA 124. As shown in FIG. 2, DPA 124
records the write transaction 200 in four streams. A first
stream, referred to as a DO stream, includes new data for
writing in LU B. A second stream, referred to as an DO
METADATA stream, includes metadata for the write trans-
action, such as an identifier, a date & time, a write size, a
beginning address in LU B for writing the new data in, and a
pointer to the offset in the do stream where the corresponding
data is located. Similarly, a third stream, referred to as an
UNDO stream, includes old data that was overwritten in LU
B; and a fourth stream, referred to as an UNDO METADATA,
include an identifier, a date & time, a write size, a beginning
address in LU B where data was to be overwritten, and a
pointer to the offset in the undo stream where the correspond-
ing old data is located.

In practice each of the four streams holds a plurality of
write transaction data. As write transactions are received
dynamically by target DPA 124, they are recorded at the end
ofthe DO stream and the end of the DO METADATA stream,
prior to committing the transaction. During transaction appli-
cation, when the various write transactions are applied to LU
B, prior to writing the new DO data into addresses within the
storage system, the older data currently located in such
addresses is recorded into the UNDO stream.

By recording old data, a journal entry can be used to “undo”
a write transaction. To undo a transaction, old data is read
from the UNDO stream in a reverse order, from the most
recent data to the oldest data, for writing into addresses within
LU B. Prior to writing the UNDO data into these addresses,
the newer data residing in such addresses is recorded in the
DO stream.

The journal LU is partitioned into segments with a pre-
defined size, such as 1 MB segments, with each segment
identified by a counter. The collection of such segments forms
a segment pool for the four journaling streams described
hereinabove. Each such stream is structured as an ordered list
of segments, into which the stream data is written, and
includes two pointers—a beginning pointer that points to the
first segment in the list and an end pointer that points to the
last segment in the list.

According to a write direction for each stream, write trans-
action data is appended to the stream either at the end, for a

US 9,235,481 Bl

11

forward direction, or at the beginning, for a backward direc-
tion. As each write transaction is received by DPA 124, its size
is checked to determine if it can fit within available segments.
If not, then one or more segments are chosen from the seg-
ment pool and appended to the stream’s ordered list of seg-
ments.

Thereafter the DO data is written into the DO stream, and
the pointer to the appropriate first or last segment is updated.
Freeing of segments in the ordered list is performed by simply
changing the beginning or the end pointer. Freed segments are
returned to the segment pool for re-use.

A journal may be made of any number of streams including
less than or more than 5 streams. Often, based on the speed of
the journaling and whether the backup is synchronous or a
synchronous a fewer or greater number of streams may be
used.

Image Access

Herein, some information is provided for conventional
continuous data protection systems having journaling and a
replication splitter which may be used in one or more embodi-
ments is provided. A replication may set refer to an associa-
tion created between the source volume and the local and/or
remote target volumes, and a consistency group contains one
or more replication sets. A snapshot may be the difference
between one consistent image of stored data and the next. The
exact time for closing the snapshot may determined dynami-
cally depending on replication policies and the journal of the
consistency group.

In synchronous replication, each write may be a snapshot.
When the snapshot is distributed to a replica, it may be stored
in the journal volume, so that is it possible to revert to previ-
ous images by using the stored snapshots. As noted above, a
splitter mirrors may write from an application serverto LUNs
being protected by the data protection appliance. When a
write is requested from the application server it may be split
and sent to the appliance using a host splitter/driver (residing
in the I/O stack, below any file system and volume manager,
and just above any multipath driver (such as EMC POWER-
PATH), through an intelligent fabric switch, through array-
based splitter, such as EMC CLARIiiON.

There may be a number of image access modes. Image
access may be used to restore production from the disaster
recovery site, and to roll back to a previous state of the data.
Image access may be also to temporarily operate systems
from a replicated copy while maintenance work is carried out
on the production site and to fail over to the replica. When
image access is enabled, host applications at the copy site
may be able to access the replica.

In virtual access, the system may create the image selected
in a separate virtual LUN within the data protection appli-
ance. While performance may be constrained by the appli-
ance, access to the point-in-time image may be nearly instan-
taneous. The image may be used in the same way as logged
access (physical), noting that data changes are temporary and
stored in the local journal. Generally, this type of image
access is chosen because the user may not be sure which
image, or point in time is needed. The user may access several
images to conduct forensics and determine which replica is
required. Note that in known systems, one cannot recover the
production site from a virtual image since the virtual image is
temporary. Generally, when analysis on the virtual image is
completed, the choice is made to disable image access.

If it is determined the image should be maintained, then
access may be changed to logged access using ‘roll to image.’
When disable image access is disabled, the virtual LUN and
all writes to it may be discarded.

20

30

35

40

45

55

12

In an embodiment of virtual access with roll image in
background, the system first creates the image in a virtual
volume managed by the data protection appliance to provide
rapid access to the image, the same as in virtual access.
Simultaneously in background, the system may roll to the
physical image. Once the system has completed this action,
the virtual volume may be discarded, and the physical volume
may take its place. At this point, the system continues to
function as if logged image access was initially selected. The
switch from virtual to physical may be transparent to the
servers and applications and the user may not see any differ-
ence in access. Once this occurs, changes may be read from
the physical volume instead of being performed by the appli-
ance. If image access is disabled, the writes to the volume
while image access was enabled may be rolled back (undone).
Then distribution to storage may continue from the accessed
image forward.

In some embodiments in physical logged access, the sys-
tem rolls backward (or forward) to the selected snapshot
(point in time). There may be a delay while the successive
snapshots are applied to the replica image to create the
selected image. The length of delay may depend on how far
the selected snapshot is from the snapshot currently being
distributed to storage. Once the access is enabled, hosts may
read data directly from the volume and writes may be handled
through the DPA. The host may read the undo data of the write
and the appliance may store the undo data in a logged access
journal. During logged access the distribution of snapshots
from the journal to storage may be paused. When image
access is disabled, writes to the volume while image access
was enabled (tracked in the logged access journal) may be
rolled back (undone). Then distribution to storage may con-
tinue from the accessed snapshot forward.

Disable image access may mean changes to the replica may
be discarded or thrown away. It may not matter what type of
access was initiated, that is, logged or another type, or
whether the image chosen was the latest or an image back in
time. Disable image access effectively says the work done at
the disaster recovery site is no longer needed.

Delta Marking

A delta marker stream may contain the locations that may
be different between the latest I/O data which arrived to the
remote side (the current remote site) and the latest /O data
which arrived at the local side. In particular, the delta marking
stream may include metadata of the differences between the
source side and the target side. For example, every 1/O reach-
ing the data protection appliance for the source 112 may be
written to the delta marking stream and data is freed from the
delta marking stream when the data safely arrives at both the
source volume of replication 108 and the remote journal 180
(e.g. DO stream). Specifically, during an initialization pro-
cess no data may be freed from the delta marking stream; and
only when the initialization process is completed and I/O data
has arrived to both local storage and the remote journal data,
may be I/O data from the delta marking stream freed. When
the source and target are not synchronized, data may not be
freed from the delta marking stream. The initialization pro-
cess may start by merging delta marking streams of the target
and the source so that the delta marking stream includes a list
of all different locations between local and remote sites. For
example, a delta marking stream at the target might have data
too if a user has accessed an image at the target site.

The initialization process may create one virtual disk out of
all the available user volumes. The virtual space may be
divided into a selected number of portions depending upon
the amount of data needed to be synchronized. A list of ‘dirty’
blocks may be read from the delta marker stream that is

US 9,235,481 Bl

13

relevant to the area currently being synchronized to enable
creation of a dirty location data structure. The system may
begin synchronizing units of data, where a unit of data is a
constant amount of dirty data, e.g., a data that needs to be
synchronized.

The dirty location data structure may provide a list of dirty
location until the amount of dirty location is equal to the unit
size or until there is no data left. The system may begin a
so-called ping pong process to synchronize the data. The
process may transfer the differences between the production
and replica site to the replica.

Virtual Service Layer

Typical server environments have one or more hosts access
storage. Conventionally, some of the hosts may be virtual
hosts or virtual machines. Generally, each virtual machine or
host has a LUN or logical unit corresponding to storage space
it may access. Typically, this LUN corresponds to a portion of
one or more physical disks mapped to the LUN or logical
drive.

Conventional Server virtualization products may have
developed the capability to execute migrations of virtual
machines, the underlying storage, or both to address load
balancing and high availability requirements with certain
limitations. Typically, conventional solutions usually require
disruptive failover (i.e. failure of one site to transfer the pro-
cesses to the backup site), merged SANs, and do not work
with heterogeneous products. Thus, in typical systems, if a
Virtual Machine were migrated to another environment, such
as a server at another location outside of a site, the virtual
machine would no longer have read write access to the LUN.
However, it is desirable to be able to migrate a virtual machine
and have it be able to have read write access to the underlying
storage.

In certain embodiments of the instant disclosure, storage
resources are enabled to be aggregated and virtualized to
provide a dynamic storage infrastructure to complement the
dynamic virtual server infrastructure. In an embodiment of
the current invention, users are enabled to access a single
copy of data at different geographical locations concurrently,
enabling a transparent migration of running virtual machines
between data centers. In some embodiments, this capability
may enable for transparent load sharing between multiple
sites while providing the flexibility of migrating workloads
between sites in anticipation of planned events. In other
embodiments, in case of an unplanned event that causes dis-
ruption of services at one of the data centers, the failed ser-
vices maybe restarted at the surviving site with minimal effort
while minimizing recovery time objective (RTO).

In some embodiments of the current techniques the IT
infrastructure including servers, storage, and networks may
be virtualized. In certain embodiments, resources may be
presented as a uniform set of elements in the virtual environ-
ment. In other embodiments of the current techniques local
and distributed federation is enabled which may allow trans-
parent cooperation of physical data elements within a single
site or two geographically separated sites. In some embodi-
ments, the federation capabilities may enable collection of the
heterogeneous data storage solutions at a physical site and
present the storage as a pool of resources. In some embodi-
ments, virtual storage is enabled to span multiple data centers

In some embodiments, virtual storage or a virtual storage
layer may have a front end and a back end. The back end may
consume storage volumes and create virtual volumes from the
consumed volumes. The virtual volumes may be made up of
portions or concatenations of the consumed volumes. For
example, the virtual volumes may stripped across the con-

10

15

20

25

30

35

40

45

50

55

60

14

sumed volumes or may be made up of consumed volumes
running a flavor of RAID. Usually, the front-end exposes
these volumes to hosts.

An example embodiment of a virtual service layer or vir-
tual service appliance is EMC Corporation’s Vplex®. In
some embodiments of the instant disclosure, a storage virtu-
alization appliance has a backend exposes LUNSs to hosts and
a front-end which talks to storage arrays, which may enable
data mobility. In certain embodiments, storage may be added
or removed from the virtual service layer transparently to the
user

In most embodiments, the virtual service layer enables
cache coherency. Thus, in certain embodiments of the current
techniques, the storage volumes, in a virtualized server envi-
ronment, which comprise the encapsulation of a virtual
machine may be coherently co-located in two sites, enabling
simultaneous, local access by the virtual machine regardless
of whether the virtual machine is located on the local or
remote site. In other embodiments, cooperative clustering of
the virtualization server nodes may allow for active/active,
concurrent read/write access to one or more federated storage
devices across the sites. In further embodiments, concurrent
access may occur even if the data has not yet been fully copied
between the two sites. In at least some embodiments of the
current techniques, it is enabled to reference the source copy
in this case, preserving seamless, continuous operation.

In certain embodiments of the current disclosure, move-
ment of the virtual machines between the two sites is facili-
tated. In some embodiments, LUN level access is active/
active, any single virtual machine may execute on only one
node of the cluster. In further embodiments, enabling of
migration of virtual machine instances may enable the migra-
tion of the 1/0 load (specifically read workloads) to storage
devices located in the site where the active node resides for
any given virtual machine.

In some embodiments of the current techniques, the ability
to migrate a VM may be enabled through the use of one or
more federated virtual volume. In certain embodiments, a
virtual machine or application may communicate through a
network with a module which presents virtual volumes to the
application or virtual machine. In further embodiments the
network may be a SAN. In at least some embodiments, this
module may provide a level of abstraction between the stor-
age and the requests for storage made by a virtual machine or
other application. In these embodiments, the module may
map the logical drive presented to the VM or application to the
storage device. In certain embodiments, the module may be
transparent to the storage request, the application or VM
functioning as it is accessing a logical drive across a network.
In other embodiments the network may be a SAN. In other
embodiments, regardless of location of the VM, the VM may
attempt to reach the LUN provided by the module, which may
map the VM request to the appropriate storage.

In some embodiments of the current invention, a clustering
architecture enables servers at multiple data centers to have
concurrent read and write access to shared block storage
devices. In alternative embodiments of the current invention,
load sharing between multiple sites while providing the flex-
ibility of migrating workloads between sites in anticipation of
planned events such as hardware maintenance is enabled. In
further embodiments, in case of an unplanned event that
causes disruption of services at one of the data centers, the
failed services may be quickly and easily restarted at the
surviving site with minimal effort.

In most embodiments, the module may communicate with
asecond module at the second site to facilitate the one or more
federated logical drive. In some embodiments, if a VM were

US 9,235,481 Bl

15

to be moved from the first site to the second site the VM would
attempt to access storage through the second module. In most
embodiments, the move would be transparent to the VM as it
would simply reach out to access the storage and the module
onthe second site would re-direct the request to the storage on
the second site. In some embodiments, the module on the
second site would direct the request to the data on the second
site. In some embodiments, the storage may be kept in sync
using a mirror, the VM may access a current version of the
data, regardless of on which site the VM is located. The
modules at the first and second site may be in communication
with each other.

In some embodiments, disparate storage arrays at two
separate locations may be enabled to appear as a single,
shared array to application hosts, allowing for the easy migra-
tion and planned relocation of application servers and appli-
cation data, whether physical or virtual. In other embodi-
ments, effective information distribution by sharing and
pooling storage resources across multiple hosts may enabled.
In further embodiments, manage of virtual environment may
be enabled to transparently share and balance resources
across physical data centers, ensure instant, realtime data
access for remote users, increase protection to reduce
unplanned application outages, and transparently share and
balance resources within and across physical data centers.

In further embodiments, concurrent read and write access
to data by multiple hosts across two locations may be enabled.
In other embodiments, realtime data access to remote physi-
cal data centers without local storage may be enabled. In
some embodiments, the virtual service layer may be imple-
mented by EMC’s VPLEX or the like.

Refer to the example embodiment of a virtual service layer
of FIG. 3. In the embodiment of FIG. 3, there are two sites
310, 350. Each site has a respective VM space or a space able
to run virtual machine, 315, 355, SANSs, 320, 330, 360, and
375 and storage 335, 380, respectively. The two sites also
have a virtual service later 385, which presents virtual vol-
umes 325. The synchronization 390 of the storage 335 is
provided by the virtual service layer 385. In the embodiment
of FIG. 3, the same virtual volume may be exposed via the
virtual service layer 385. This volume may be kept synchro-
nized so that any VM in VM Space 315 or VM in VM Space
355 accesses the same virtual volume with the same data
regardless of in which VM Space, 315, 355, the VM resides.

In some embodiments of the current disclosure, replication
and data mobility may be enabled at difference geographic
sites. In certain embodiments, this may be enabled by cache
coherency functionality. In at least some embodiments, the
cache coherency may enable data to be consistent over large
distances and be able to be accessed at both geo sites. In a
particular embodiment, there may be two geo sites. In this
embodiment, if a read is performed on an area of the storage
that does not belong to the local site, the read may be delayed
and the read may be performed on the remote site. In this
embodiment, if a read is performed on an area owned by the
local site, then the read may be performed on the local site.

In other embodiments, the geo sites may enforce a write
order fidelity mechanism (WOFM) by periodically quiescing
or stopping the storage and ensure that the replicated data is
consistent. In these embodiments, a checkpoint may be cre-
ated at each site. This checkpoint may be transmitted to the
other site. The other site may flush this checkpoint in order to
ensure it has the data as the other site. In these embodiments,
only consistent data may be written to the other site. In these
embodiments, if a site crashes, then both sites are ensured to
have a point in time, where both sites have the same data.

10

15

20

25

30

35

40

45

50

55

60

65

16

A discussion of some types of virtual storage may be found
in US. Pat. No. 7,206,863, entitled “SYSTEM AND
METHOD FOR MANAGING STORAGE NETWORKS
AND PROVIDING VIRTUALIZATION OF RESOURCES
IN SUCH A NETWORK?” issued on Apr. 17, 2007, to EMC
Corp, U.S. Pat. No. 7,770,059, entitled “FAILURE PROTEC-
TION IN AN ENVIRONMENT INCLUDING VIRTUAL-
IZATION OF NETWORKED STORAGE RESOURCES”
issued on Aug. 3, 2010, to EMC Corp, U.S. Pat. No. 7,739,
448, entitled “SYSTEM AND METHOD FOR MANAGING
STORAGE NETWORKS AND PROVIDING VIRTUAL-
IZATION OF RESOURCES IN SUCH A NETWORK”
issued on Jun. 15, 2010, to EMC Corp, U.S. Pat. No. 7,739,
448, entitled “SYSTEM AND METHOD FOR MANAGING
STORAGE NETWORKS AND PROVIDING VIRTUAL-
IZATION OF RESOURCES IN SUCH A NETWORK
USING ONE OR MORE ASICS” issued on Nov. 17,2009, to
EMC Corp, U.S. Pat. No. 7,620,774, entitled “SYSTEM
AND METHOD FOR MANAGING STORAGE NET-
WORKS AND PROVIDING VIRTUALIZATION OF
RESOURCES IN SUCH A NETWORK USING ONE OR
MORE CONTROL PATH CONTROLLERS WITH AN
EMBEDDED ASIC ON EACH CONTROLLER” issued on
Nov. 17, 2009, to EMC Corp, U.S. Pat. No. 7,225,317,
entitled “SYSTEM AND METHOD FOR MANAGING
STORAGE NETWORKS AND FOR MANAGING SCAL-
ABILITY OF VOLUMES IN SUCH A NETWORK?” issued
on May 29, 2007, to EMC Corp, U.S. Pat. No. 7,315,914,
entitled “SYSTEMS AND METHODS FOR MANAGING
VIRTUALIZED LOGICAL UNITS USING VENDOR SPE-
CIFIC STORAGE ARRAY COMMANDS” issued on Jan. 1,
2008, to EMC Corp, and U.S. Pat. No. 7,216,264, entitled
“SYSTEM AND METHOD FOR MANAGING STORAGE
NETWORKS AND FOR HANDLING ERRORS IN SUCH
A NETWORK” issued on May 8, 2007, to EMC Corp, all of
which are hereby incorporated by reference. A discussion of
mirroring may be found in U.S. Pat. No. 7,346,805, entitled
“PROTECTION OF MIRRORED DATA” issued on Mar. 18,
2008 to EMC Corp, which is hereby incorporated by refer-
ence.

Journal Based Replication with Point in Time Access

In most embodiments, each site of a geographically sepa-
rated active/active storage cluster of sites may have a write
cache; the cache may be used to maintain write order fidelity.
In most embodiments, each site may reserve a portion of a
volume, so that other sites may not be able to write to the
reserved portion of the volume, unless the site requests a
reservation to this portion of the volume. In certain embodi-
ments, the write cache may contain the changes that occur to
the reserved portions of the volume.

In some embodiments, the write order fidelity mechanism
may periodically quiesce both sites and may create a consis-
tency check point or a change set. In certain embodiments, the
data from the caches of each site may be asynchronously
transferred to a replica site. In most embodiments, the change
set data may periodically be flushed on the backend storage to
enable the backend storage has a consistent point. In at least
some embodiments, before a change set is flushed the system
may read the undo of'the change set and send it to areplication
appliance (which may be a physical or virtual appliance or run
as a process inside the cluster or sites). In some embodiments,
the appliance may write the data to an undo journal and the
system may flush the data to the backend storage.

In some embodiments of the instant disclosure, the sites or
cluster of sites may be fractured or broken. In certain embodi-
ments, this may enable active production to occur on one of
the sites while enabling a second site to be rolled to a point in

US 9,235,481 Bl

17

time (PIT). In at least some embodiments, this may enable a
user to examine and use a PIT while active production may be
occurring on another site.

Refer now to the example embodiment of FIG. 4. In the
example embodiment of FIG. 4, there are two sites, site 419
and site 450. In this example, Site 410 and site 450 each have
aVM space 415, 455. In this embodiment, the VM spaces 415
and 455 have reserved a portion of virtual volumes 425 and
430 which part of virtual service layer 485. In this embodi-
ment VM space 415 has reserved portion 427 of volume 425
and VM space 455 has reserved portion 432 of Virtual Volume
430. As noted herein, the virtual volumes 425 and 430 appear
to the VM Spaces 415 and 455 to be the same volume. In FIG.
4, each site also has a Replication Protection Appliance, 420
and 475 respectively, a journal, 440 and 480 respectively, and
Write Cache 435 and 470 respectively.

Refer now to the example embodiments of FIG. 5 and FIG.
6. The example embodiments of FIGS. 5 and 6 illustrate
creating any point in time journal at each site. Periodically the
storage on sites 410 and 450 is quiesced (step 500). A syn-
chronization point i.e. a change set is created (step 510), and
storage may be un-quiesced. The write cache data, 435 and
470, is transferred to the other sites (step 520). In some
embodiments, the write cache may be transferred asynchro-
nously. When a change set is to be flushed to the backend
storage, the undo data for the change set is read from backend
storage (at each of the sites) (step 525). The undo data is
written to the RPAs 420 and 475 (step 530), each RPA 420,
475 writes the undo data to the journals 440 and 480. The data
in the write caches 435 and 470, respectively, is written to the
volumes (step 540). Once the change set is flushed the RPA is
indicated a change set flush is completed and the DPA create
a snapshot i.e. a consistent point in time that the user will be
allowed to access (step 550).

Refer now to the example embodiments of FIGS. 6 and 7,
which illustrate a user examining previous point in time
(PIT). In certain embodiments, the user may seek to restore a
corrupted file. In other embodiments, the user may seek to
restore the whole system to a previous PIT. In further embodi-
ments, the user may want to perform tests on a previous PIT.
The user request access to a specific point in time (705),

The cluster or sites 610 and 650 are split (step 710). The
10s are stopped on the non-active site, in this embodiment site
650 (Step 720). The IOs in the write caches 635 and 670 are
flushed to the volumes 625 and 630 (Step 730). The non-
active site, 650, is rolled to point in time (PIT) 632 (Step 740).
In certain embodiments, when rolling the data from the undo
log is read, the redo for the undo data may be read from the
volume, may be written to a redo log, and the undo data may
be applied to the volume. PIT 632 is exposed to a user (Step
750). In most embodiments, the user may now test the data at
the non active site and I0s may continue to flow to the active
site. In most embodiments, the storage is an active/active
storage where both sites may expose the logical unit with the
same identity, when the data is exposed to the user in a test
mode, the system may expose the logical unit of the different
point in time with a different SCSI identity.

Refer now to the example embodiments of FIGS. 6 and 8.
The user is enabled to access the PIT 632 (step 810) and is
enabled to read and write from the image. Changes to the PIT
632 are written to the UNDQO stream in journal 680 (step 820).
A decision is made if it is desirable to revert to the PIT 632 of
volume 630 to the active site or to continue with the current
image of volume 625 on active site 610, i.e. discard the
changes made to PIT 632 and make the two (or more) sites
active/active again. I[f the decision is made to keep the current
image of volume 625 on active site 610, changes made while

40

45

55

18

accessing PIT 632 are discarded (step 835) by rolling the
undo stream to original data of point in time 632. In most
embodiments, during this roll no redo data may be written
because it is desired to discard the changes made. In most
embodiments, the image of volume 630 is rolled to the latest
PIT in journal 680 (step 845) by reading the data in the redo
log, reading the undo of the redo data from volume 630,
writing the undo data to the undo stream and writing the redo
data to volume 630. The sites 610, 650 are synchronized (step
850). In certain embodiments, the synchronization may be
performed by the virtualization layer, which may track the
changes that happened in the active site, and the virtualization
may discard the changes which happened on site 650 since the
changes where reverted. If a decision is made to access the
selected point 632 in time access to the active site 610 is
stopped (step 855). The redo log is discarded (step 857). The
hosts, in this embodiment, are virtual machines in VM space
615, are brought down (i.e. stopped from accessing the vol-
umes) (step 860). Both sites 610 and 650 are synchronized
using the changes tracked by the virtualization layer (step
865). The hosts in VM spaces 615, 655, are brought up (step
870).

In most embodiments, when the sites are being synchro-
nized undo for all IO operations to the virtualization layer
may be written to the undo logs. In at least some embodi-
ments, new snapshots may not be created on the site which the
data is being updated. In certain embodiment, if the data of
PIT 632 was to be kept, until synchronization of this PIT
finished, new snapshots may not be created in site 610. In
other embodiments, if the data of site 610 was kept, no new
snapshots may be created at site 650 until initialization ends.
In most embodiments, there may be no new snapshots is that
until the sites are synched, the data may not be in a consistent
state.

The methods and apparatus of this invention may take the
form, at least partially, of program code (i.e., instructions)
embodied in tangible media, such as floppy diskettes, CD-
ROMs, hard drives, random access or read only-memory, or
any other machine-readable storage medium. When the pro-
gram code is loaded into and executed by a machine, such as
the computer of FIG. 9, the machine becomes an apparatus for
practicing the invention. When implemented on one or more
general-purpose processors, the program code combines with
such a processor 903 to provide a unique apparatus that oper-
ates analogously to specific logic circuits. As such a general
purpose digital machine can be transformed into a special
purpose digital machine. FIG. 10 shows Program Logic 1034
embodied on a computer-readable medium 1030 as shown,
and wherein the Logic is encoded in computer-executable
code configured for carrying out the reservation service pro-
cess of this invention and thereby forming a Computer Pro-
gram Product 1000. The logic 1034 may be the same logic
940 on memory 904 loaded on processor 903. The program
logic may also be embodied in software modules, as modules,
or as hardware modules.

The logic for carrying out the method may be embodied as
part of the system described below, which is useful for car-
rying out a method described with reference to embodiments
shown in, for example, FIG. 5 and FIG. 7. For purposes of
illustrating the present invention, the invention is described as
embodied in a specific configuration and using special logical
arrangements, but one skilled in the art will appreciate that the
device is not limited to the specific configuration but rather
only by the claims included with this specification.

Although the foregoing invention has been described in
some detail for purposes of clarity of understanding, it will be
apparent that certain changes and modifications may be prac-

US 9,235,481 Bl

19

ticed within the scope of the appended claims. Accordingly,
the present implementations are to be considered as illustra-
tive and not restrictive, and the invention is not to be limited
to the details given herein, but may be modified within the
scope and equivalents of the appended claims.

What is claimed is:
1. A computer program product for use in replication com-
prising:
anon-transitory computer readable medium encoded with
computer executable program code for replication of
data, the code configured to enable the execution of:
quiescing 1O commands to sites of an active/active storage
system, the active/active storage system having at least
two storage sites communicatively coupled via a virtu-
alization layer, wherein the virtualization layer enables
cache coherency between each of the at least two storage
sites, wherein the virtualization layer enables simulta-
neous, active/active, concurrent read/write access to a
same virtual volume at both of the sites;
creating a change set for the same virtual volume;
unquiescing IO commands to the sites;
transferring data of the change set to the other sites of the
active/active storage system by the virtualization layer;
and
flushing the data to the sites.
2. The code of claim 1 wherein the flushing comprises:
reading, by the virtualization layer, an undo of the data to
be flushed in the change set;
writing the undo data corresponding to the data in the write
cache to a data protection appliance (DPA);
writing, by the DPA, the undo data to a journal; and
writing the data to the backend storage system by the
virtualization layer.
3. The code of claim 2 where the DPA is a virtual machine;
and the code further enables:
writing the data from the write cache to a volume;
notifying the DPA a full change set has been flushed; and
creating a bookmark at the undo journal by the DPA.
4. A computer program product for use in replication
enabling:
anon-transitory computer readable medium encoded with
computer executable program code for replication of
data, the code configured to enable the execution of:
fracturing a cluster of an active/active storage system,
wherein the cluster includes at least two sites, wherein
an active/active storage system that is not fractured
includes a virtualization layer, wherein the virtualization
layer enables simultaneous, active/active, concurrent
read/write access to the same virtual volume at both of
the sites, wherein the virtualization layer enables cache
coherency between each of the at least two storage sites;
stopping TO on a first site of the cluster; and
rolling to a point in time on a first site of the cluster that is
consistent with at least a second site of the cluster before
the at least two sites were fractured.
5. The code of claim 4 further enabling:
flushing a write cache on a second site of the cluster to the
first site of the cluster.
6. The code of claim 4 further enabling:
requesting, by a user, access to a point in time;
writing undo information generated by rolling to the point
in time to a redo log;
exposing the point in time to the user;
enabling the user to access the point in time data; and
storing changes to the point in time in an undo stream.

10

20

30

35

40

45

55

60

20

7. The code of claim 6 further enabling:

exposing the point in time to the user, where in the logical
unit identity is different than the original logical unit
identity.

8. The code of claim 7 further enabling:

shutting down hosts on second site, before stopping access,
and restarting hosts when access restored.

9. The code of claim 4 further enabling:

determining to revert to the point in time; and

based on a positive determination stopping access to the
second site, discarding the redo log on the first site,
making the sites not fractured, synchronizing the sites to
the point in time and allowing access to the second site.

10. The code of claim 9 further enabling:

based on a negative determination, stopping access to the
first site discarding the changes made at point in time;

rolling the first site to the latest point in time using the redo
log, making the sites not fractured and synchronizing
both sites to an image on the second site; and

restoring access to the first site.

11. A computer implemented method use in replication,

comprising:

quiescing IO commands to sites of an active/active storage
system, the active/active storage system having at least
two storage sites communicatively coupled via a virtu-
alization layer, wherein the virtualization layer enables
cache coherency between each of the at least two storage
sites, wherein the virtualization layer enables simulta-
neous, active/active, concurrent read/write access to a
same virtual volume at both of the sites;

creating a change set for the same virtual volume;

unquiescing IO commands to the sites;

transferring data of the change set to the other sites of the
active/active storage system by the virtualization layer;
and

flushing the data to the sites.

12. The method of claim 11 further comprising:

reading, by the virtualization layer, the undo of the data to
be flushed;

writing undo data corresponding to the data in the write
cache to a data protection appliance (DPA);

writing, by the DPA, the undo data to a journal; and

writing the data to the backend storage system by the
virtualization layer.

13. The method of claim 11 where the DPA is virtual

machine and the method further comprising:

writing the data from the write cache to a volume;

notifying the DPA a full change set has been flushed; and

creating a bookmark at the undo journal by the DPA.

14. A computer implemented method comprising:

fracturing a cluster of an active/active storage system,
wherein the cluster includes at least two sites, wherein
an active/active storage system that is not fractured
includes a virtualization layer, wherein the virtualization
layer enables simultaneous, active/active, concurrent
read/write access to the same virtual volume at both of
the sites, wherein the virtualization layer enables cache
coherency between each of the at least two storage sites;

stopping 1O on a first site of the cluster; and

rolling to a point in time on a first site of the cluster that is
consistent with at least a second site of the cluster before
the at least two sites were fractured.

15. The computer implemented method of claim 14 further

65 comprising:

flushing a write cache on a second site of the cluster to the
first site of the cluster.

US 9,235,481 Bl

21

16. The computer implemented method of claim 14 further
comprising:
requesting, by a user, access to a point in time;
writing undo information generated by rolling to the point
in time to a redo log;
exposing the point in time to the user;
enabling the user to access the point in time data; and
storing changes to the point in time in an undo stream.
17. The computer implemented method of claim 16 further
comprising:
exposing the point in time to the user, where in the logical
unit identity is different than the original logical unit
identity.
18. The computer implemented method of claim 14 further
comprising:
determining to revert to the point in time; and
based on a positive determination stopping access to the
second site, discarding the redo log on the first site,

22

un-fracturing the sites by unfracturing the virtualization
layer, synchronizing sites to the point in time and allow-
ing access to the second site.

19. The computer implemented method of claim 18 further

5 comprising:

based on a negative determination, stopping access to the
first site discarding changes made at the point in time;

rolling the first site to the latest point in time using the redo
log, making the sites not fractured by connecting the
virtualization layer and synchronizing both sites to an
image on the second site; and

restoring access to the first site.

20. The computer implemented method of claim 14 further

comprising:

shutting down hosts on second site, before stopping access,

and restarting hosts when access restored.

#* #* #* #* #*

